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ABSTRACT

The thermal conditions in the lunar surface are considered
on a gross scale in terms of models with temperature-dependent thermal
properties, including radiative energy transport. Agreement is oktained
with infrared measurements of cold terminator temperatures and radio
lunation data at millimeter wavelengths for a range of postulated parameters
of the surface material. The observed increase of mean radio brightness
temperature with wavelength is interpreted as due to radiative energy
transport and the resultant nonlinearity of the heat-conduction equation,

rather than to a large radioactive heat flux.

The postulated existence of radiative energy transport is
consistent with a porous or frothy medium, in agreement with photometric
and laboratory simulation experiments, as well as with recent radar
depolarization measurements. A distance scale of 0.1-0.3 mm for the
effective mean separation of radiating surfaces is suggested by this

interpretation of the data.
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I. INTRODUCTION

At the present time contradictions exist between deduced
thermal properties of the lunar surface as interpreted from infrared
and from radio observations. In addition, high-precision radio
observations have been interpreted in terms of an unexpectedly large

thermal flux in the lunar surface material.

In this paper I suggest a means whereby these contradictions
may be resolved by considering temperature dependence of the conductivitv,
including a radiative contribution, and of the specific heat. I have
written a computer program to solve the heat-conduction ecuation for
arbitrary temperature- and depth-dependent thermal properties during
a lunation and an eclipse, and to compute radio brightness temperatures

for such models of the lunar surface.

It is first shown that the mean temperature beneath the
surface increases significantly with depth for no net thermal flux only
if the conductivity increases with temperature. Recent measurements
of postulated lunar materials indicate such a temperature dependence.
Therefore, an observed increase of the mean radio brightness temperature
with wavelength may be indicative of the thermal properties of the
material and not of the net thermal flux resulting from radicactive heat-

ing.

Secondly, it is argued that radio measurements cannot be
interpreted uniquely in that two parameters are involved in an ambiguous
manner, i.e., the ratio of the thermal to the electromagnetic wavelengths
and a product of thermal properties. The radio data may, therefore, be
reinterpreted in terms of models suggested by recent infrared measure-

ments of the minimum surface temperature reached during the lunar night.

Each of eight simple models, six of which have temperature-
dependent thermal properties, agrees well with infrared eclipse and
lunation data as well as with radio observations in the millimeter range.
All but one are homogeneous with depth to at least several meters and
are stratified although a more complex structure is probably more

realistic. This group of models suggests that the surface layer may be
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a highly porous, possibly frothy, one in which radiation plays a
significant role in heat transfer in the material. Such a tentative
model is in agreement with recent radar depolarization data and

laboratory simulation experiments.

It should be emphasized that the actual lunar surface may
be quite complicated, consisting of many materials arranged in depth
and across the surface. This picture is suggested by recent high
resolution infrared, radio, and radar data. This paper is an attempt
to describe the gross thermal properties of a region of the lunar
surface, the subterrestrial region, so as to be consistent with recent
infrared, radio, and radar data, by means of simple models incorporating
temperature-dependent thermal properties. The approach should give
information about this region if the actual inhomogeneities act only
as fine structure upon the emitted thermal radiation rather than as
important contributions to this radiation. If the contrary proves
to be true, which is the more likely case, then the present methodology
should be valid provided one weighs the contributions to the infrared
and radio signals by the relative proportions of the various materials
in the field of view. As the data become more numerous, such an

approach becomes more fruitful and should be pursued.

=Y
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II. CONTRADICTIONS IN PREVIOUS THEORIES

The first attempts at characterizing the thermal properties
of the lunar surface consisted of solutions to the heat conduction
equation in a homogeneous, plane—~parallel medium of temperature-
independent properties under boundary conditions appropriate for a
lunation and an eclipse. Wesselink (1948) obtained reasonable agreement
between his theoretical eclipse cooling curves and Pettit's (1940)
eclipse data for a model in which the thermal parameter
- - _1

v = (xpec) * = lOOOcm2°Kcal lsec z

where

the thermal conductivity

~
Il

the density, and

Q
Il

specific heat.

Jaeger and Harper (1950) and some subsequent investigators have

obtained better agreement with two-layer models.

Prior to 1962 the only temperature measurement of the dark
side of the Moon available was the value of 120 * 15°K obtained by
Pettit and Nicholson (1930), later confirmed by Sinton (1962). Jaeger
(1953) found this midnight temperature consistent with a homogeneous
model with y =500, or by two-layer models consisting of less thar a
centimeter of insulating materials over a more conducting medium. With
the vast improvement of infrared instrumentation -- and especially
the recent measurements by Low (1965} -- the mean temperature of the
cold lunar limb has been more reliably established at 90°K. Thus both
eclipse and lunation infrared measurements may be explained in terms
of a typical lunar surface element homogeneous at least to a depth of

centimeters, several thermal wavelengths, and characterized by vy - 1000.

In the last five years important observations at millimeter
and centimeter wavelengths have been made in the Soviet Union by
Salomanovich, Troitsky, Kislyakov, and many others. Krotikov and Troitsky
(1963a) have summarized this work. Within the confines of a linear
theory, e.g., one in which the thermal and electromagnetic properties are
assumed to be temperature~independent, these data have been interpreted
in terms of a homogeneous lunar surface to a depth of several meters,

characterized by y =~350 as opposed to the value of 1000 suggested by
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the infrared data. Their interpretation of these data apparently is
inconsistent with a thin layer of highly-insulating material cover-
ing a large fraction of the lunar surface, which would exhibit the

rapid surface cooling observed in the infrared during an eclipse and

during the lunar night.

A further important result of this work is an apparent
measurement of the thermal gradient in the lunar surface. Krotikov
and Troitsky (1963a, 1963b) have interpreted the observed increase
in the mean brightness temperature as measured by several radio-
telescopes using the "artificial Moon" calibration procedure
(see Krotikov, Porfiryev, and Troitsky [1961]) in terms of a heat
flux produced by a level of radiocactivity 4-6 times in excess of
that predicted by MacDonald (1959), Levin and Maeva (1961), and
Jaeger (1959) under the assumption of chondritic lunar material.
However, the measured thermal gradient, as Krotikov and Troitsky have
shown, produces a temperature = 1000°K at a depth of 60 km and may
well lead to a molten lunar interior, if the Moon consists in large
part of this material. The observed nonspherical shape of the Moon

makes the possibility of a molten interior highly guestionable.

Thus, recent infrared and radio observations, when interpreted
in terms of temperature~independent thermal properties for the lunar
surface material, lead to contradictory and disturbing conclusions. To
explain the contradiction between infrared and radio observations, one
must show that either one or both sets of observations has been
interpreted incorrectly; or, there must be a mechanism whereby the
lunar material can exhibit more insulating properties (y large) at
the surface during lunar nighttime, while at the same time the material
exhibits a significantly smaller thermal parameter at centimeter and
meter depths beneath the surface, where the observed radio emission
originates. Thus, near the surface during the lunar night, the product
of kpc must be an order of magnitude smaller than a few centimeters
or meters beneath the surface. Yet at the same time, the radio data
apparently do not allow the surface material to exhibit different

thermal properties on the average over a lunation from the material

directly below it. Thus, an increase with temperature of the thermal

conductivity and the specific heat are expected. This tentative
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conclusion has also been suggested by Krotikov and Troitsky (1963a)
and Muncey (1958, 1963). Prior to this time, models of the lunar
surface (including temperature-dependent properties) have been
computed for special cases by Muncey (1958, 1963), Watson (1964),
and by Tyler and Copeland (1962).
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III. MEASUREMENTS OF THE THERMAL PROPERTIES OF POSTUALTED
LUNAR MATERIALS

The specific heats of many silicates, oxides, and terrestrial
rocks have been measured in the laboratory in the temperature range of
70°K-400°K. All of these materials described in Goldsmith, Waterman,
and Hirschhorn (1958) exhibit a steep rise in thermal conductivity at
low temperatures and then a gradual increase past 200°K to typical

1 1

values of 0.18-0.24 cal gm ~°K ~ at 350°K. Buettner (1963) compared

the specific heats of many such materials and concluded that in the
1/3
r

lunar range of temperatures ¢ =T and thus a temperature-independent

specific heat approximation may be justified.

It is generally suggested that the lunar surface material
is either porous or finely divided "dust" with very small relative
contact area. If the material contained no contact points in the
vertical direction but instead were stratified in layers separated by

a distance s, the conductivity would be purely radiative
K., = 4de¢ sT"s , (1)

where €IR is the emissivity of the material corrected for multiple
reflections at infrared wavelengths corresponding to the peak of the
Planck distribution function at a temperature T, and o is the Stephan-
Boltzman constant. In general the thermal conductivity will consist
of a purely conductive component and a purely radiative component, and
may be characterized by the ratio of the two components at some repre-

sentative temperature such as 350°K,

= ~ iB ~ 4eIRoT s )
350 © = — (2)
K K
c c
and
k(T) = KR + Kg o (3)

Now s will be an effective mean separation of radiating surfaces

and Ka the conductivity through the contact points. Values of Ko
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are often several orders of magnitude less than the conductivity of

the same material as a nonporous solid.

Few measurements exist of thermal conductivities over the
temperature range 100° -400°K of finely ground silicates deposited
under high vacuum conditions. Bernett, Wood, Jaffe, and Martens (1963)
obtained thermal conductivities for several particle size distributions
of crushed olivine basalt in the range 4-15 x 10_6ca1 cm_lsec_l°1<_l
between -70°C and +90°C. Measurements for each sample tended to increese
with temperature, but the one sample (-35 mesh, p = 1.49 gm cm—3) that
exhibited the greatest temperature variation can be characterized in the
temperature range -10°C to +90°C by Ko = 2.2 x 10_6 and R350 = 2.
Buettner (1963) describes measurements performed on crushed basalt powder
of 5y grain size that can be characterized by Ke 9 x 10“6 and Ryggog

=~ 2.5. These and subseguent data are summarized in Table I.

Watson (1964) has measured the thermal conductivities of dry
powdered silicates at10"5to 10_6torr between 150°K and 350°K. His
data are well described by the functional form (3) with the radiative
and conductive terms a function of particle size. In particular, the
conductive component was found to be independent of composition and
inversely proportional to particle size. The radiative component con-
sisted of a constant term corresponding totransmission through small
grains and term linear in particle size corresponding to radiation

between large particles.

More recently Wechsler and Glaser (1965) have summarized
the measurements of the thermal conductivities of porous rocks and
powders. The data for rock powders measured at pressures near lO_5 torr
fall in the range of 5 x 10°% < «(T) < 10 x 107% cal em tsec tox7L,
They cite thermal conductivity measurements that increase 30% for solid
pumice (between 223°K and 323°K), 50% for basalt lava (between 220°K and
265°K), and 30% for basalt powder (between 221°K and 331°K). Their first
preliminary data on basalt powder (104-150u particle size) at the high

vacuums of 5 X 10—10 torr exhibit a very significant increase of 40-50%

between 280°K and 330°K. In this temperature range Ko = 6 x 10_7 and
R350 10, but the data are widely scattered and R350 may not be well

determined.

£
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These data as summarized in Table I are far from conclusive,
but they do make it imperative that radiative conductivity be considered.
Unfortunately, other effects such as possible changes in density, adhesion,
or contact resistance with temperature may be important and may affect
the thermal properties. For this reason I have calculated models also

for a general power law approximation to the conductivity over the lunar
range of temperatures

k(x,T) = Ko(x)Ta . (4)

=



IV. COMPUTATIONAL PROCEDURES

Computations are described of the surface temperature T(0,t)
and internal temperature distribution T(x,t) during a lunation and
an eclipse in a plane-parallel medium in which the thermal and electro-
magnetic properties are assumed only to be a function of depth x
beneath the surface. The surface material has been assumed opague ‘
in the middle infrared (5-40u), as suggested by Lanner (1952), but
partially transparent in the radio region. The heat-conduction equation

3T(x,t) _ 3 AT (x,t)

pc(x,T) «({x,T) ——— ’ (5)
at aIx X
subject to boundary conditions
e,y ALEB o onf0,8) - e Ite,n,t) (6)
IR B
N ax
x=0
and
T(x,t) = constant as x —— large , (7)

is solved by difference equation techniques on an IBM 7094 computer.
In Egs. (5), (6), and (7) we define

erg = Mean emissivity at the wavelengths corresponding to
the peak of the Planck distribution at lunar temperatures,
eg = bolometric emissivity for solar illumination, and
I(g,n,t)

insulation at lunar rectangular coordinates (£,n),

and time t .

The complete difference equations and the method of their solution

are fully described in Ingrao, Young and Linsky (1965) and Linsky (1965)
All of these computations were made for 20 discrete depths between

the surface and a depth of 4 or S5 thermal wavelengths, and for at least
4000 times during a lunation. Care was taken to damp out errors in the
assumed initial temperature distributions, so that the internal tempera-
ture distributions should be correct to t 1°K, at least to a depth of
one thermal wavelength.



-10-

Computations have been performed for three different
representations of the thermal properties in order to determine the
effects of nonlinearities in the heat-conduction eguation upon the

observable thermal emission.

Model Type I ~ Temperature-independent thermal properties

k(x,T) = «(x)
c(x,T) = c(x)

— - =1
c(X) = vy (x) = [k (x)cx) ]| *

Model Type II - Radiative and thermal conductivity

< (x,T) = k_(x) + de 0T (x,t) s (x)

b IR
c(x,T) = c(x)T (x,t)
Y (%) =EK (x)p (x)c(x,350° K)]
Y350 (%) ~[K(x 350°K)p (x)c(x,350° K)[

Model Type III - Power law approximation to the thermal properties

k(x,T) = (x)T (x,t)
c(x,T) = 4 (X)T (x,t)
Y350 (X) = [K(x 350°K¥p (x) c(x,350° K)]

Solutions of the heat-conduction equation in homogeneous
media are most easily expressed as functions of the thermal parameter
v , when the depth variable is expressed in units of the thermal

wavelength,

Pk
L = ’ (8)
1T ’ﬂpC

the depth at which the amplitude of the first harmonic in a Fourier
expansion of T(x,t) is reduced to e’_l of its surface amplitude. Here
P is the lunar synodic period. See Wesselink (1948) and Carslaw and

Jaeger (1959). However, if one wishes to consider a multilayer model,
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it is often more convenient to consider the physical depth x as
the independent variable. In this representation, solutions of

the heat-conduction equations are functions of the diffusivity o:

o = £, (9)

For each modél computed, the specific heat has been assumed to be

0.20 cal gm-l"K_l or this value at 350°K when temperature dependent,
and unless specified, the density has been assumed to be 1 gm cm-3.
Thus one needs only to specify «k(x,T) for each model and one mav

. characterize each in more familiar terms by the value of Y350(x)
[%(X,350°K)p(X)C(X,350°Ki]. Each solution will be invariant to
multiplying « and p by a constant factor with Y350 being reduced by
that factor.

For these calculations, a value of 0.88 has been assumed
for e, and €IR" The former value has been estimated from the albedo
data cited in Harris (1961) while the latter is in agreement with
measurements of 40y and 400y quartz sand by Burns and Lyon (1963) and
measurements of assumed lunar powders in the 7-14p wavelength region
by Van Tassel and Simon (1964). Krotikov and Shchuko (1963) have
shown that the nighttime surface temperatures, which most conclusively
differentiate one model of the surface from another, depend only very
weakly upon €n and £IR for models with temperature-independent pro-
perties, and the same is true for the models under consideration. 1In
agreement with Allen (1963), I have assumed a value of the solar
constant of 1.99 cal cm—zmin'l , corresponding to a nonrotating blackbody

equilibrium temperature of 395°K at 1 AU.

Infrared brightness temperatures characterize the radiation

from a grey surface of emissivity ¢ as observed through a wide-band

8-14u filter. The procedure for dei?ving these quantities is described
in Ingrao, Young, and Linsky (1965). These brightness temperatures
will be subject to small corrections if the lunar spectral emissivity
is not constant in the 8-14u region, as Burns and Lyon (1962) suggest,

but they will vary significantly only at high temperatures for changes
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in the effective EIR" The angular dependence of ¢Irs @S measurei by
Geoffrion, Korner, and Sinton (1960), and a possible transparency
of the surface material in the infrared region, as discussed by

Buettner (1963}, have not been considered in the present report.

If one assumes homogeneous electromagnetic properties, e.g.,
no significant change in porosity or chemical composition with depth,
and no scattering of thermal radiation at radio wavelengths in the
medium or at the surface, the radio brightness temperature TR(A,t)
for wavelength A in the Rayleigh-Jeans approximation, shown by

Piddington and Minnett (1949), is

*© —kxxsecein
TR(A,t) = (l—Rl//‘ T(x,t)e kAseceindx, (10)
0

where

R = surface reflectivity
k., = electromagnetic absorption coefficient at the

observed wavelength A
6. = angle with respect to the normal made by an

observed ray when in the medium.

The method of evaluating Eq. (10) numerically will be described

below.

In a dielectric, kx will be of the form

.

k, = 2 (11)
A
but if lattice vibrations are important, as Sinton (1960) suggests at
the short millimeter wavelengths, this relation will not be wvalii. A
value for R may be obtained either from the dielectric constant and
the Fresnel laws or from radar measurements. For these computations R

is assumed to be 0.05 at the center of the disk corresponding to a di-

electric constant of 2,5, in close agreement with the values of 2.8 based on

J
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radar measurements of Evans and Pettengill (1963) and Rea, Hetherington,
and Mifflin (1964). If the dielectric constant of the surface material
is as low as 1.5, as suggested in Krotikov and Troitsky (1963a) or in
the range 1.7 to 1.8 according to Hogfors et al (1965), then R = .01 or
0.02, respectively, and all computed radio brightness temperatures

should be increased.

For the computation of eclipse and lunation surface tempera-
tures, it is not important to know accurately temperatures at depths
in excess of a few thermal wavelengths. However, in the radio region
of the spectrum one may be observing radiation emitted from depths on
the order of 10 or more times X, and thus one must know temperatures
at depths in the order of meters. The value of T(x,t) more than a few
centimeters beneath the surface will be independent of time and may be
easily computed, assuming temperature-independent thermal properties,
from the average value of the surface temperature over a lunation and
an assumed mean thermal flux. In the general case of temperature-
dependent properties, the determination of T(x,t) beneath the surface

is more complex.
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V. VARIATION OF AVERAGE TEMPERATURE WITH DEPTH IN THE LUNAR SURFACE

The heat conduction, Eq. (5), may be written in the form

30(x,t) - 2 px,t) (12)
ot X
where F(x,t) is the thermal flux
F(x,t) = «(x,7) 22OLEL (13)
IX

and Q(x,t) is the heat content per unit volume of the material

T(x,t)
Q(x,t) i/Q p(x) c(x,T)aT . (14)
0

Taking the time average of both sides of Eg. (1l2) over a lunation

of synodic period P, one obtains
P P
1 3 (x,t) at = 1 dF(x,t) at . (15)
P 0 ot P ax
The left-hand side of this equation may also be written as

P

3 < Qx,t) » =2 Qx,t) L, (16)
ot P ot
0
where the symbol < > means time average over a lunation. Since the

solar constant and presumably any internal heat sources in the lunar
surface show no secular variation, and the Moon never deviates far from

1 AU from the Sun, I Q(x,t) > must be zero. Therefore,
ot

3 . < (x,T) 3T (x,t)
IxX 3t

>=0 , (17)
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and

< «(x,T) AT (x,t) > = < F(x,t) > = constant,. (18)
IxX

In the special case of no internal heat sources and therefore no
net thermal flux, this constant will be zero. Thus, for a stratified
medium in which the thermal conductivity is depth-dependent but not a

function of temperature,

< T(x,t) » = < T(x=0,t) > if < F(x,t) > =0
= < T(x=0,t) > + < LY Lo (19)
Kk (x)

if < F(x,t) > # 0.
However, if the thermal conductivity is temperature dependent, the
mean value of the temperature may increase or decrease with depth

even if < F(x,t) > is zero. This fact has been noted by Muncey (1958)

and Krotikov and Troitsky (1963). For < F(x,t) > = 0, and assuming

k(x,T) = KO(X)Ta(x,t) , (20)

one obtains
+
< 78 l(x,t) > = constant = < Ta+l(x=0,t) > 1f a # -1 ,

or (21)

< 109[?(X,til > = constant = < log[%(x=0,£€] > if a= -1 ,

Now one writes T(x,t) as a Fourier series at each depth

T(x,t) = To(x)-+ §Z.Tn(x) cos [ﬁwt—¢n(fi} ’ (22)

n=
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where Tn(x) and ¢ (x) are the amplitudes and phase lags relative to
insolation, and w=27/P is the lunar angular frequency of apparent

rotation. Substituting Eq. (20) into (21), one obtains for integral
positive values of a:

T2 x) = < TP(x,t) > - % z T %) ifa=1, (23a)
2 n=1
3T (x) o
7300 = < Pt > - —2— F 7%x) ifa=2  (230)
2 |

and for nonintegral positive values the infinite series

T0a+1(x) - < patl (x,t) > - a(atl) Toa—l(x) j?; T 2(x)
4 n
n=
+ ... if a >0 ., (23c)

Since the amplitudes Tn(x) are real and decrease monotonically with
depth and since the first term on the right-hand side of each equation
is a constant, Egs. (23a), (23b), and (23c) all exhibit solutions in
which the average temperature To(x) increases with depth, asymptotically
approaching a limiting value that depends on this constant. This
behavior is exhibited in Fig. 1 where the increase in To(x) is given

by AT = TO (asymptotic) - TO(x=O).

If, on the other hand, the thermal conductivity decreases

with temperature, the reverse occurs:

= 2
: T ~(x)
loge['l‘o(x)] = < loge[T(x,t)] >+ % Z B if a = -1, (24a)

n=1 2
Ty (x)
and
= T 2(x)
T, x) = < T (x,e) > 4+ 2172) n if a¥ -1,
4 a+l (24Db)

n=1 To (x) a<o .
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Now To(x) decreases with depth approaching limiting values as shown

in Fig. 1. For a two-term expression,
a
k(x,T) = Kc(x) + KO(X) T (x,t) ,

similar formulae with similar dependencies upon depth may be obtained.

In particular, for a =1

KO(X) 2
Ty(x) = < T(x,t) > + —— < T (x,t) >
2k (x)
C
(25)
1l = Tnz(X)
- —|TyT(x) + :i L NS .

2 n=1 2

When < F(x,t) > is not zero, a further increase of To(x) with x 1is

superimposed upon the previous curves. For example, if a 1is positive
and
a
k(x,T) = KO(X) T7(x,t) ,
the analogue of Eg. (21) contains an additional term
+ +
< 7? 1(x,t) > = _atl < F(x,t) > x + < Ta+l(x=0,t) >, (26)
kg (%)

and now the general solution of Eg. (23c) becomes

T (x) = fa+l) < F(x,t) » x + < Ta+l(x=0’t) >
Ko (%)

(27)

—MTOa—l(x) Z T 2(x) + .n..
4 n=1 n

Thus to the previous solutions a depth dependence is added to TO(x)

roughly proportional to x(l/a+l).
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In the absence of internal heat sources, the difference
between the mean value of the temperature at the surface and its
asymptotic value, reached at that depth at which the temperature
does not vary over a lunation, can be as large as 50°K. This tempera-
ture difference AT increases with the value of a and decreasing
conductivity, but is practically independent of any temperature

dependence of the specific heat.

In Fig. 1 curves are plotted of the temperature difference
AT, assuming < F(x,t) > 1is zero. As expected from Eg. (18), any
temperature dependence of the specific heat plays an unimportant role*,
whereas the ratio of radiative to conductive flux at 350°K, R350, or

the conductivity'temperature exponent are the important parameters.

For two—-layer models, AT is intermediate between that
characterizing the upper and lower layer materials. When the upper
layer depth is about one-third of Lympr AT is the mean of that computed
for each layer separately. For the present I will consider the thermal

wavelength 2 for temperature-dependent models to be the value of

1T
VPK/“pC at the mean surface temperature.

In the simplest case of temperature-independent thermal
properties

< F(x,t) >

< T(x,t) > = < T(x=0,t) > + X . (28)

Kk (x)

For < F(x,t) » = 2.5 x 10_7 calcm_zsec_l, as suggested above,

< T(x,t) > increases over a distance of 421T by 0.9°K for y = 1000
and .15°K for y = 350. Similar small increases in < T(x,t) > charac-
terize temperature-dependent models. Thus the curves of AT vs Y350

in Fig. 1 are essentially unmodified.

Therefore, in evaluating the integral in Eg. (10), one can
assume < F(x,t) > = 0 to a depth of 421T and use the temperature
distributions T(x,t) computed by adjusting T(x=4ZlT), the temperature

at the deepest point considered, such that flux conservation is obeyed.

*

The statements in Krotikov and Troitsky (1963a, 1963b) that a
temperature-dependence of the specific heat can introduce a change
in mean temperature with depth are not supported by computations
for a model in which a=0 and b=1l; and the above theoretical con-
siderations do not allow for any such variation.
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Beyond this depth the temperature is independent of time. Assuming

a constant thermal flux at these depths,
F =< F(x,t) > ,

the temperature for Model Type III will be given by

(a+1) 1/ (a+1l)
Tx) = | < T (x=0,t) > + X x > 48 . (29)
g (%)

and for Model Type II by the solution.to the equation

4
oe ST (x) Fx oe S (%)
T(x) + —i8 — = — F o< T(x=0,8) > + —R < plix=0,8) >

KC(X) KC(X) KC(X)

(30)

X > 421T .

Radio brightness temperatures TR(A,t) have been obtained by
inserting computed values of T(x,t) and T(x) at large depths into
Eg. (10) for the eight models consistent with infrared observations
as described below. These radio temperatures evaluated at the sub-
terrestrial point for 30 times during a lunation have been fitted to

a three-term Fourier series,

3 -
TR(A,t) = TRO(A) + zz TRn(A) cos [%mt—¢n(xiJ ’ (31)
n=1
using a least-squares procedure. The values of TRO(A), TRl(A), and

¢l(x) are listed in Table II.

v
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VI. INTERPRETATION OF MEAN RADIO BRIGHTNESS TEMPERATURES

Observations of the mean temperature of lunar thermal
radiation cited by Krotikov and Troitsky (1963b) were obtained with
telescopes of low angular resolution compared to the lunar diameter.
They have been modified by the correction procedure of Krotikov (1965)
to be applicable to the center of the disk, assuming a dielectric
constant of 2.5, and are plotted in Fig. 2 along with the values of
TRO(X) for the eight computed lunar surface models consistent with
infrared lunation measurements. The effect of temperature-dependent
thermal properties should not subject this modification procedure to
systematic errors that depend upon A . For a dielectric constant of
1.8, all of these data points would be decreased by 1% and the computed
radio temperatures increased by 3%. Except where noted, an internal
flux of 3.4 x 107/ -1

rate of temperature increase at wavelengths longer than 3.2 cm.

calcm—zsec has been chosen to fit the observed

Unfortunately, absolute flux measurements are indeed very
difficult, and it is a credit to those who designed the "artificial
Moon" method that it has been used. However, this procedure requires
elaborate corrections for diffracted terrestrial radiation by the
observed disk (see Tseytlin [1963,1964]) and assumptions concerning
the effective solid angle of interception of the disk's diffraction
pattern by the Earth and its relation to the diffraction correction.
Since the effects of deviations from these assumptions will depend
upon the disk's diffraction pattern and therefore the observing wave-
length, any systematic errors in this calibration procedure may be

wavelength-dependent and modify my conclusions.

The simplest models that predict a dependence of TRO(A)
upon A consistent with the absolute mean temperature measurements
in Fig. 2 are two radiative models (7350=885,R350=l,b=0) and
(y350=670,R350=1,b=1); and the two-layer temperature-independent model
(yc=1075 upper layer 30 cm deep and yc=250 lower layer). The parameters
for the later model were chosen to exhibit a steep rise in TRO(A)

between 1 mm and 3.2 cm and a less steep rise at larger wavelengths.

Note Eq. (10) in Tseytlin (1963).
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If the dielectric constant is smaller than the assumed value of 2.5,
one must modify the parameters in these three models to effect good
agreement with the data. Choosing a dielectric constant of 1.5 as
a plausible lower limit, I have interpolated among the computed

models to obtain the estimated parameters shown in Table III.

From these parameters and the data one can place outer
limits upon the deduced mean thermal flux passing through the surface
material due to internal heat sources. Using the conductivities
appropriate to the four radiative models described in Table III and

a criterion of satisfying six of the éight data-point error brackets

between 3.2 cm and 50 cm, I obtain a value of 2.7 x 10_7 calcm_zsec—l
for the lower limit, and 4.2 x lO-7 calcm_zsec_l for the upper limit.
Corresponding values of the flux for the two-layer models with tempera-

ture-independent properties are 3.7 x 107% and 5.8 x 107° calem ?sec™?! ,

respectively.

The above analysis shows that under the assumption of tempera-
ture-independent thermal properties, only an increase of the conductivity
with depth can account for the form of the mean radio brightness data
shown in Fig. 2. No distribution of materials on the surface can produce
other than a linear increase with wavelength. However, the mean thermal
flux necessary to maintain the observed TRO(A) for the two-layer models
is from 15-23 times that predicted for chondritic materials. More
radioactive materials do exist, but if meteoritic samples may be con-
sidered a guide, they are less common in the solar system. In addition,
there is the problem of supporting the nonegquilibrium figure of the
Moon, which is aggravated by this high level of radioactive heating.
Therefore, the radiative models'appear to be the more plausible explana-

tion of the data.

A further result of this analysis is an estimate of the
distance scale of separation of radiating surfaces in the lunar material.
This mean effective spacing would correspond to an average pore size
in a porous medium or to an interparticular spacing in a grainy or
dusty medium. Typical values of 0.1 to 0.3 mm are suggested. This
distance scale is an order of magnitude larger than that proposed by Hapke
and Van Horn (1963) to account for the photometric properties of the lunar

surface, but is not unlikely for a porous medium.
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VII. INFRARED OBSERVATIONS AND THEIR INTERPRETATION

In any attempt to understand the thermal behavior of the
lunar surface material, one should consider each method of obtain-
ing information in the light of its inherent limitations and the
degree to which the fundamental data on the surface material parameters
have been smeared out or convoluted with unwanted information. For
the interpretation of radio data on the increase of brightness
temperature with wavelength, one must compare absolute measurements
that are affected by side lobes, telescope efficiency, and sky back-
ground, and the necessity of independent knowledge of the electro-
magnetic absorption coefficient Ky - Radio observations of amplitudes
and phase lags of Fourier components of the integrated lunar emission

require relative measurements and are thus the more reliable,

Infrared data on the surface brightness temperature, by
its very nature, must give the most reliable information of the
thermal properties of the lunar surface material at small depths
short of actual measurement in situ. Assuming that one is indeed
observing the surface temperature of an opaque medium, this temperature
is affected only by an emissivity factor that is unknown and may be
temperature-dependent. However, in the 8-14y and 17-22y regions
of the spectrum, one is observing during the lunar night in the
Wien domain of the Planck spectral energy distribution, where the
observed temperatures are very weakly affected by flux measurement errors
and departures from a blackbody. For example, in the 8-14y window
a 12% error in the measured flux or an emissivity of .88 produces only
a 1°K error in deduced surface temperature for temperatures near 100°K.
Different models of the surface may exhibit midnight and cold terminator
temperatures 10°-20°K different, and thus one may be able to discrimi-
nate among models of the thermal properties a few centimeters beneath
the surface by means of these measurements alone. Eclipse cooling curves
yield information of the surface material parameters to smaller depths,
but lunar daytime infrared measurements offer no information on these
properties, since the insolation almost completely controls the surface
temperature.

e
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Recently Watson (1964) has been unable to adeguately interpret
the infrared scans across the evening terminator and into the lunar night
obtained by Murray and Wildey (1964). His models included radiative
conductivity and assumed a homogeneous stratified medium. I also have
had difficulties in interpreting this data due in part to the complex
nature of the observed thermal emission near the evening terminator.
When observations are obtained with a finite angular resolution over a
region where the surface temperature and, therefore, the emitted flux
is a rapidly varying function of position, and where shadowing and
small-scale inhomogeneities at the very surface play an important role,
they do not readily lend themselves to an unambiguous interpretation
by means of simple models. On the other hand, when one observes the

thermal emission before local sunrise, none of these complications arises.

For these reasons I will use as my primary source of information
infrared data on the minimum temperature reached during the lunar night,
and choose those models of the surface that are in basic agreement with

this data, for comparison with infrared and radio measurements.

The only infrared data available with a signal~to-noise ratio
sufficient to measure the coldest lunar temperatures are those of
Low (1965). He obtained a mean temperature of 920°K for the cold limb,
but observed cold areas of < 70°K and hot areas including one > 150°K.
Radio emission also varies from place to place, as Gary (1965) has
recently confirmed, but the variation is much less. Taking 90°K to be
representative for the surface brightness temperature minimum Tm,B and
in particular the value for the subterrestrial point, I have calculated
models with a range of thermal parameters that are consistent with this

measurement.

_ In Fig. 3 calculated cold limb brightness temperatures are
presented as a function of Y350 for the model types considered. These
brightness temperatures, as mentioned above, are computed for e .88
and the 8-14yu atmospheric window, but will vary only by a few tenths
of 1°K for observations in the 17.5-22y window. The models described
in Table IV, representing a wide range of parameters, are consistent
with this 90°K criterion. The dependence of brightness temperature
upon phase during a lunation differs at most by 4°K at each terminator
among the models, and, therefore, does not allow for a distinction
among them from infrared measurements alone. In Figs. 4 and 5 the
variation of surface temperature T(0,t) with phase is presented for a
representative sample of temperature-~independent models to show the

quantitative effect of the nonlinearities.
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During the course of an eclipse, the most relevant information
is obtained in the umbral phase when the conductivity and specific heat
of the lunar material control the cooling rate. One can minimize, but
not eliminate, the effects of an unknown surface emissivity by consider-
ing the ratio of observed temperatures to the measured pre-eclipse
temperature (see Ingrao, Young, and Linsky [19651). This approach also
minimizes errors introduced by comparing observed temperatures at
positions other than the subsolar point with computations made at the
subsolar point. Beyond 30° in latitude or longitude from the subsolar
point, these errors computed in Ingrao, Young and Linsky (1965) become

important.

In Fig. 6 a comparison is made between the measurements of
Pettit (1940) and cooling curves for the eight models computed for
the circumstances of the 1939 eclipse and for the area of the lunar
surface observed. None of the models fits exactly but, on the other
hand, a better representation could be achieved only by a two-layer
model with a very thin upper layer and a lower layer with Y350 somewhat
less than 1000. Another possibility would be a composite model with
several materials on the surface. Either of these situations may

indeed be the case.



-25-

VIII. RADIO OBSERVATIONS AND THEIR INTERPRETATION

The relationship between observed brightness temperature at radio
wavelengths integrateg over the lunar disk TR(A) and the temperature at each
depth, longitude, latitude, and time T(x,¢,%,t) has been discussed in the
literature (see Krotikov and Troitsky {1963a] for full references.) Io
review, one can write T(x,9¢,V¥,t) assuming temperature-~ and depth-indejendent
thermal properties in the form of a Fourier series

@

a
T(x,¢,¥,t) = To(lp) + Z (-1 nTn(w)e"xm

n=1 (32)
~xvnP/2a

cos| ne - n¢ - ¢,

and therefore the thermal radio brightness temperature at (¢,y) as

oo

T ¢, b,t) = [1-R(e, )1 + f T(x,¢,¢,t)k,sec r
0 (33)
—xkxsec r
e dx ,
o (—1)a“Tn(w>
= [1-R(6,9)1{ To(¥) +Y TV
n=1 @+26ncos r + 26ncos g
(34)

cos [né - n¢ ~ ¢, -~ & (¢,¢)]1 .

J

The notation is that of Krotikov and Troitsky (1963a) with slight modifica-
tions and has the meaning

To(w), Tn(w) Fourier components of the surface temperature,

<
I

n phase shift relative to insolation for the nth Fourier
component of the surface temperature,
P = lunar synodic period,
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sn = /~£B = ratio of the thermal attenuation coefficient for the

<O
nth Fourier component to the electromagnetic attenuation

coefficient,
a = diffusivity,

a, = 1/2 (n-1) (n-2),

R{¢,¥) = surface reflection coefficient,
¢ = 2wt/P,
r = angle between the normal to the surface
and the direction at the point of reception, and
-1 6, cos r
(6,9) = tan = phase shift relative to insolation
Enle,

1+ 6n cos r for the nth Fourier component of

the radio brightness temperature.

Very often the antenna pattern integrates over a large part of the lunar
disk or the whole digk, in which case the integrated thermal emission will
be given by TR(A)

a
T () = (1<R.)6.T. (0 = (1) "t_(0)s
(M) = _1_800()+(1—R_];)Z .
n=1 @+25 +28 % (35)

n n

S fn]

where the coefficients BO and Bn’ which depend upon the dielectric constant e,
the antenna pattern, and the observing wavelength A, have been calculated for

the case of a single lobe antenna beam by Krotikov (1965).

In their summary paper Krotikov and Troitsky (1963a) give strong

arguments for a homogeneous surface layer at least to a depth of 32 which is

iT’
15-20 cm for the models this analysis suggests, based upon measurements of

the phase lags and amplitudes of the Fourier coefficients obtained at a
number of wavelengths. These data have been interpreted by Troitsky (1962)
to show

§. = 2 .

1 (36)
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In addition, three independent arguments are given for a thermal
parameter Yo = 350 characterizing the surface material of temperature-
independent properties. The first argument given is that the infrared
midnight temperature Tmid,B(O) measured by Sinton (1960) is 122 ® 3°K
which is consistent with 350 < Yo © 430. This measurement was obtained by
use of a pyrometer of unspecified characteristics and differs by a factor
of 50 in flux from a 100°K antisubsolar point temperature corresponding to
the cold limb data of Low (1965). Sinton's temperature is also in dis~-
agreement with the data of Saari (1964) and Low (1964).

Secondly, a value of 250 < Yo < 450 is consistent with the absolute
measurements of the average brightness temperature at 3.2 cm of 211 ¥ 2°k,
In contradiction to infrared measurements, these radio determinations of
the temperature exhibit the same errors as flux measurements, and the
"artificial Moon" calibration is subject to errors as cicted above. A

decrease of this measured temperature by only 5% would lead to Yo = 1000.

The final argument is based on an empirical relation between the
ratio of the mean to first harmonic amplitude of the radio brightness
temperature and the observed wavelength. This ratio M= ERO/ERl' strictly
speaking, is of quantities integrated over the disk, but is nearly equal to
the ratio at the center of the disk,

M = TRO(O)/TRI(O)
The observed data have been extrapolated to A = 0 leading to a ratio of the
surface temperature Fourier components TO(O)/Tl(O) = 1.5, and the relation

51 = 2). .However, the data may also be fitted equally well by the parameters

1.3

Ty (0) /T (0)

8

1 2.4

or

T (0) /T4 (0)

1

oo
N
o
AN
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Any one of a number of such parameters will also agree with the data
presented. But the value of Yo for a homogeneous temperature-independent
model varies rapidly with TO(O)/Tl(O), as shown in Table V. Therefore,
this method of interpreting radio observations gives very little un-
ambiguous information‘concerning the thermal properties of lunar surface

materials.

In short, the value of y_ = 350 ¥ 20% as given by Krotikov and
Troitsky (1963a) is based upon a dubious infrared measurement, an absolute
radio brightness temperature for which small errors greatly affect the

conclusions, and an extrapolation procedure that gives ambiguous results,

However, certain features of their analysis may be valid despite
their conclusions, and even if the assumption of temperature-independent
thermal properties is invalid, those relations will be wvalid for which
appropriate mean quantities can be suitably defined when the heat conduction

equation is considered in its nonlinear form Eq. (5).

One can rewrite Eg. (32) at the subsolar point (¢ = 0, ¢ = 0)

for the more general case in the form

© -x/U0_(T)
T(x,t) = TO(X) + z Tne n CcOs nmt—¢n - V—}({T)—- . (37)
n

n=1

where Un(T) and Vh(T) are analogous to a thermal wavelength but will in
general not be equal. Since Un(T) and Vn(T) are, in general, related to the
temperature in a nonlinear manner and the mean value of the temperature
To(x) depends upon depth, these attenuation and phase-lag distance scales
also depend upon depth.

At each depth considered in the lunar surface and for each computed

model, a one-term Fourier series was fitted to the computed temperatures

T(x,t) = To(x) + Tl(x) cos Lft—¢l(x{] - (38)
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and the parameters Tl(x) and ¢l(x) have been plotted in Figs. 7 and 8.
Although this procedure is not, strictly speaking, a method of solving
for U, (T) and V,(T) independently, the fact that - log, Eil(x)/Tl(O)]
and ¢n(x) obey a linear relation with depth to a very good approximation
implies that Ul and Vv, may be considered depth-independent at these
depths. Beyond these depths temperature fluctuations become negligible.
One can define an attenuation wavelength as that depth at which

- log, [T 04 /m@] =1,

and a phase-lag wavelength as that depth at which

¢l(21¢) ¢l(0) = 1 radian .

These quantities are listed in Table IV. 1In each case they differ by less
than 5%, so that one can consider their average to be the effective thermal

wavelength L A similar procedure could be applied to their higher

iT-
harmonics. Eg. (37) can now be written as
T -x/L
nT X
T(x,t) = To(x) +zz Tne cos nwt—¢n E__ . (39)
n=1 nT

From this, one can derive the same equations for TR(A,¢,w,t), TR(A,O,O,t),

and TR(A)as before except that now

1

§.(n) =
1 (40)
Lyp<,y

In Table IV there is also given the ratio of mean surface temperature
to amplitude of the first harmonic for those models corresponding to a cold
limb brightness temperature of 90°K. Each of the eight models under considera-
tion exhibits a ratio very close to 1.30. From this ratio and the set of
possible parameters that are in agreement with experimental amplitude ratio

M = TRO/TRl versus A, we must conclude that

dl(k) = 2.4 (41)

instead of 2.

——
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Computations have been made of the radio brightness temperature at

the subterrestrial point during a lunation and an eclipse assuming

K = ____._l_.__ ’ (42)
2.4 L

1T

and the computed values of LlT listed in Table IV for a number of wavelengths
and the eight surface models under consideration. These computations apply,
strictly speaking, only to the center of the lunar disk and should be
compared with data obtained with a resolution of better than 6' to minimize
smearing of relevant detail. Krotikov (1965) presents correction factors

to be applied to the measured Fourier amplitudes and phase-lags for an
antenna pattern with a central lobe of Gaussian shape and arbitrary width,
but no side lobes. These factors were computed for an assumed homogeneous
temperature-independent surface model. Both of these assumptions may not be
valid. Levin (1963) has noted that observations with low angular resolution
may give a false picture of the true nature of the lunar surface material in any
one region. In addition, significant variations in the radio emission have
been noted over the surface at 3.3, 4, and 8.6 mm. For these reasons, I have
chosen for comparison the high angular resolution data of Low and Davidson
(1965) at 1-1.4 mm, Gary, Stacey, and Drake (1965) at 3.3 mm, Kislyakov and
Salomonovich (1963) at 4 mm, Salomonovich and Losovsky (1962) at 8 mm,
Koshchenko, Losovsky, and Salomonovich (1961) at 3.2 cm, and Mayer,
McCullough and Sloanaker (1961) also at 3.2 cm. In each case the data, which
apply to the center of the disk, have been renormalized so that the observed
and computed mean temperatures agrée. By this procedure I am comparing
observed and computed relative temperatures that are unaffected by systematic
errors and errors in the assumed surface reflectivity. The 1.2, 3.3, and 4 mm
data may not be readily characterizéd by a one-term Fourier series and are

presented along with the eight models in Figs. 9, 10, and 11.

At each wavelength there is good agreement between computations
for each model and the data. The main exception to this is the 1.2 mm data
at the sunrise terminator. This discrepancy can be attributed to the fact

that shadowing effects are important at solar elevation angles below 20°.

k.



-31~

Mean slopes on the order of 10-12° on the scale of one meter have been
predicted by Rea, Hetherington, and Mifflin (1964) based on radar back-

scattering measurements.

In Table II the computed relative amplitudes TRl(A) and phase-lags
¢1(A) for the first term of a Fourier series are compared with the data at
4 mm and 8 mm and 3.2 cm. The good agreement at millimeter wavelengths
and at 3.2 cm suggests that each of the eight models may be representative
of a large part of the lunar surface, but it in no way discriminates among
them.

Lunar thermal emission has been observed during a lunar eclipse
most recently at a variety of millimeter wavelengths by Kamenskaya et al (1965),
at 1-1.4 mm by Low and Davidson (1965), and at .8 and 1.5 mm by Baldock et al
(1965) .

Unfortunately, only the data of Low and Davidson and the 1.2 mm
data of Kamenskaya et alwere obtained with suitable angular resolution,
3'.9 and > 1' respectively, and under suitable observing conditions so that
they could be reasonably interpreted in terms of the computed radiation

emitted by a small area on the lunar surface.

These data disagree significantly with each other and with predic-
tions of all the models. Since the data are inconsistent but bracket the

predictions of the models, one can conclude nothing from them at this time.
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IX. CONCLUSIONS

Infrared and radio measurements can at best give information
about the gross nature of the thermal properties of the lunar surface
to a depth of a few tens of centimeters. Each type of data sheds light
more or less unambiguously upon some aspect of the problem, but any
proposed model of the lunar surface must be in agreement with all of
the data.

The logical starting point of this analysis was the typical
minimum temperature of 90°K for the cold terminator. Eight models of
the lunar surface were proposed, including a wide range of temperature-
dependent and -independent properties, characterized by 625 < Y3g5q9 © 1075.
A computer program was written to solve the heat-conduction equation
for an eclipse and a lunation as well as to compute radio and infrared
brightness temperatures for any region of the lunar disk. This program
may, with no modification, be applied to similar bodies such as Mars
and Mercury or may find application in considering heat transfer for

time-dependent insolation problems such as the decay of a comet.

Each of these eight models is in agreement with infrared and
radio data at high angular resolution on the lunar disk. However,
each model predicts a significantly different mean radio brightness
temperature dependence on wavelength. To the extent that the intrinsically
difficult precision measurements obtained in the U.S.S.R. are free from
systematic errors that depend on wavelength, two models including
significant radiative energy transfer during the lunar daytime appear

to be the most plausible.

The mean effective separation of radiating surfaces for these
models, .16 and .27 mm respectively (.08 and .11 mm for a dieletric
constant of 1.5), suggests either porous frothy media or grainy media
consisting of particle sizes of this order of magnitude. Recent radar
depolarization measurements of Hogfors et al (1965) suggest a tenuous
lunar surface layer at least 20 cm in depth with a porosity greater
than 60%.

Given the lunar environment and the fact that at least the
mare regions consist mainly of large-scale lava flows not covered with

dust (see Kuiper (1965)), it is plausible to assume the physical nature
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of the lunar surface material is that produced by an originally molten
material that upwelled and solidified in a vacuum. Recent laboratory
experiments by Dobar, Tiffany, and Gnaedinger (1965) have verified
that a porous medium is produced when molten silica is allowed to
upwell in a vacuum. This material is of low density and reproduces
lunar photometric curves and discolors when irradiated under conditions

simulating the solar wind.

The agreement between independent infrared, radio, radar,
photometric measurements, and laboratory data suggests that thes models
presented here may be representative on a gross scale of much of the

lunar surface.
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Bernett et al (1963)

Buettner (1962)
Watson (1964)
Watson (1964)
Watson (1964)

Wechsler & Glaser

1000, c

For vy

For vy 350, ¢ =

TABLE T

SUMMARY OF RELEVANT MEASUREMENTS OF THE THERMAL PROPERTIES
OF POSTULATED LUNAR MATERIALS

o) Grain Size K3500K K R350
(gm em™3)  (microns) (1078 cal cm ter tsec™h)
1.49 20-200 6.6 2.2 2.
2.61 5 31. 9.0 2.5
1.50 30 4.3 1.4 2.
1.50 100 6.7 .67 9.
1.50 300 14, : .24 57.
(1965) - 104-150 6.6 .6 10.
.2 1.00 0 5.0 5.0 0
.2 1.00 0 41 41 0



MODEL PARAMETERS.

I Yo = 1075

I Yo = 1075, vy, = 250(x > 30cm)
F = 4.8 x 10" %calen %sec™))

II Y350 = 885, R=1, b =0

IT Ya59 = 810, R =2, b =0

IIT y355 = 750, R =3, b =0

IIT y45, = 670, R=1, b =1

IIT Y45, = 850, a =1, b =0

III yg59 = 625, a =1, b =1
OBSERVATIONS (BEAM WIDTH)

Low and Davidson (1965) 1.2mm,

3*.9, 1'.0
Fedoseyev (1963) 1.3mm, 10'
Gary etal (1965) 3.3mm, 2'.9

Kislyakov and Salomonovich (1963)
4mm, 1'.6

Salomonovich and Losovsky (1962)
8mm, 2°'

Kaschenko, Losovsky and
Salomonovich (1961) 3.2cm, 6°'

Mayer, McCullough and Sloanaker
(1961) 3.2cm, 9°'

TRO(l.2mm)

(°K)

209.3

210.8

229
219

196
228
211
223

195

TRO(SOCm)
(°K)
247.1

266.9

265.5
274.0
279.6
263.0
272.0

266.4

TABLE

RADIO DATA AND Ct

¢ Tgy(l.2mm) NE
(em™ oo (1. 2mm) (c
.096 .578 1
.096 .572 L
.097 .564 N
.101 .556 1
.097 .538 1
.062 .568 1
.090 .523 1
.062 .538 1

.555 1



ABLE II

ND COMPUTED MODELS

¢l(1.2mm)

(degq)

l6.1

l6.1

l6.1
15.4
15.6
l6.2
15.9

15.4

16

TR1(3.3mm)

TR0(3.3mm)

.385

.379

. 365
. 349
.374
.335

. 355

¢l(3.3mm)

(deg)

27.3

27.3

TRl(4mm)

TR0(4mm)

.345

.341

.331
.327
.312
.335
.298

.318

377

¢l(4mm)

(deg)

29.5

29.5

29.4
28.4
28.3
29.7
29.0

28.3

27

TRl(Smm)

TRO(Bmm)

.215

.210

.205
.203
.193
.207
.184

.198

.189

¢l(8mm)

(deq)

36.5

36.5

35.2

30

TR1(3.2cm)

TR0(3.2cm)

.064

.064

.076

.061

¢l(3.2cm)

(deg)

44 .4

44.5

44.3
43.4
43.3
44 .5
43.4

43.4

45

44



TABLE IIT
MODELS IN AGREEMENT WITH MEAN RADIO BRIGHTNESS DATA
s <F(x,t)>
Model Parameters (mm) (calcmzsec_l)
e = 2.5
I v, =1075 y_ =250(x > 30 cm) — 4.8 x 107°
II Y350 = 885 Ry =1 b =0 .16 3.4 x 1077
IT yy50 = 670 Ry =1 b =1 .27 3.4 x 1077
e = 1.5
I v, =1075 y_ = 460(x > 30 cm) - 3.3 x 10°°
IT vy59 = 975 Rygq = 1/2 b =0 .08 3.4 x 1077
IT Y350 = 1030 Ry = 1/2b = 1 .11 3.4 x 1077



II1

IT

IT

II

IIT

III

MODEL PARAMETERS

~<
1l

<
It

F =

Y350
Y350
Y350
Y350
Y350

Y350

1075

1075, Yo = 250 (x > 30cm)
-1

4.8 x 10—6calcm_2 sec )

= 885, y_, = 1250, R = 1,
= 810, y_ = 1400, R = 2,
= 750, y_ = 1500, R = 3,
= 670, y_ = 950, R = 1,

=850, a=1, b =20

=625, a =1, b =1

s

(mm)

.16
.25
.32

.27

AT

(for F=0)

(°K)

24.0
38.1
46 .5
26.1
33.1

33.0

TO(O

(°K)

219.

219,
218.
219.
219,
219,

220,



Ty (0)

(°K)

219.2

219.4

219.2
218.7
219.2
219.6
219.4

220.1

TABLE IV

INFRARED COMPUTED DATA

14

(cm)

4.15

4.17
4,33
4.59
6.66
4.50

7.22

1la

(cm)

LIT
(°K)

Tmin,B

(°K)

89.7

90.2

90.0
89.5
90.1
89.8
89.7

90.3

Tmid,B

Kc/o
or Ko/o

(°K) (calcm2°K—lsec_lgm‘l)

98.1 4.33 x 10°°
085 4.33 x 107°

3.46 x 1077
98.3 3.20 x 107°
97.2 2.55 x 107°
98.3 2.22 x 107°
98.7 5.54 x 107°
98.5 1.99 x 1078
99.6 3.63 x 1078



TABLE V

HOMOGENEOUS TEMPERATURE-INDEPENDENT MODELS

Ty (0) /T4 (0) Yo
1.5 400
1.4 600
1.3 900
1.2 1500

] M’fﬁJ



AT (°K)

50

PARAMETERS )
R350=|,b=| ﬂ
R350% 110=0 i
R35022:0=0
R3s50™ 3:0=0
a=l,b =1 —
a=l,b =0
a=~-1,b=0
ol 1 1 1 | 1 I 1 | I T 1 ]
[0] 500 1000 1500
-1
2
= c
Y350 " (xPC)
The difference AT between mean surface temperature and the

asymptotic value of temperature beneath the surface, assum-
ing no net thermal flux, plotted as a function of thermal
parameter yj., defined at 350°K. Model Type II includes
radiative conductivity, and Model Type III includes a
general power law approximation to the temperature depend-
ence of thermal conductivity and specific heat. AT is
solely a result of nonlinearity introduced into the heat-
conduction equation and is zero when thermal properties of

the medium are assumed to be temperature-independent.
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Curves showing computed values of the mean component of radio brightness temperature at the center of the disk

as a function of wavelength. Data points are those tabulated in Krotikov and Troitsky (1963a), modified to

correspond to center of disk by use of parameters computed by Krotikov (1965) and a dielectric constant of 2.5,
Computed temperatures include surface reflectivity loss of 5%. Net thermal flux of 3.4 x 10~/ cal cm 2sec” ! .
has been assumed, for all models but one, so as to produce a rate of increase of radio brightness temperature . rgff
between 3.2 and 50 cm commensurate with the data. A flux of 4.8 x 10-'6 cal cm-zsec-l was chosen for the -
two-layer model to satisfy the data between 0.4 and 3.2 cm, and the lower layer thermal parameter was chosen

to produce the observed increase in temperature betweeun 3.2 and 50 cm.
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FIG. 4. Computed surface temperatures during the lunar night are

compared for radiative (II) and nonradiative (I) models.

The parameter R the ratio of radiative to conduc-

350 '
tive flux at 350°K, is a measure of the importance of
radiative energy transport in these models. Phase 360°

corresponds to the antisubsolar point.
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Computed surface temperatures during the lunar night are
compared for temperature-independent models (I) and
models (III) in which the thermal conductivity and
specific heat are proportional to the powers a and b
respectively, of the temperature.
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FIG. 6. Theoretical eclipse cooling curves are compared with the data of Pettit (1940)
for the October 27, 1939 eclipse and lunar rectangular coordinates (£ = 0., n = + ,17).
For this eclipse the duration of penumbral phase t, = 74 min., and the duration of

0
umbral eclipse is 139 min. or 1.88tO .
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FIG. 7. Values of the first harmonic amplitudes of the computed temperature distribution
obtained by a least-squares procedure at a number of depths beneath the surface
are compared with the surface amplitudes for a number of models. In each case
an exponential decrease with depth is an excellent approximation, so that one
can define a thermal attenuation wavelength £1a unambiguously as that depth at

1

which the first harmonic amplitude decreases to e ~ of its surface value.
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Values of the first harmonic phase lags relative to surface insolation of the

ccaputed temperature distribution obtained by a least~squares procedure at a
number of depths beneath the surface are compared for a number of models. 1In
each case a linear increase with depth 1is an excellent approximation, so that
one can define a thermal phase lag wavelength Ql¢ unambiguous as that depth

at which the first amplitude phase lag relative to inscolation increases by one

radian relative to the surface phase lag.
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FIG. 9.

compared with the data of Low and Davidson (1965).

theoretical curves and the data at the sunrise terminator (¢ = 90°) may be due

to shadowing by the rough surface.

Computed radio brightness temperatures at 1.2 mm for the center of the disk are

The discrepancy between the
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FIG. 10. Computed radio brightness temperatures at 3.3 mm for the center of the disk are

compared with temperatures interpolated from the isotherms of Gary, Scacey, and
Drake (1965).
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FIG. 11. Computed radio brightness temperature at 4 mm for the center of the disk are

compared witnh the data of Kislyakov and Salomonovich (1963).
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with the data of Low and Davidson (1965)
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and Kamenskaya et al (1965).
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FIG. 12. Computec radio brightness temperaturcs for 1.2 mm at the center of the disk for

1964 are compared
The

circumstances of thesec eclipses are sufficiently similar that the two sets of

data should agrec.
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